Introduction to CMOS VLSI Design

Lecture 17: Design for Testability

David Harris

Harvey Mudd College Spring 2004

Outline

- □ Testing
 - Logic Verification
 - Silicon Debug
 - Manufacturing Test
- □ Fault Models
- Observability and Controllability
- Design for Test
 - Scan
 - BIST
- □ Boundary Scan

Testing

- ☐ Testing is one of the most expensive parts of chips
 - Logic verification accounts for > 50% of design effort for many chips
 - Debug time after fabrication has enormous opportunity cost
 - Shipping defective parts can sink a company
- Example: Intel FDIV bug
 - Logic error not caught until > 1M units shipped
 - Recall cost \$450M (!!!)

Logic Verification

- Does the chip simulate correctly?
 - Usually done at HDL level
 - Verification engineers write test bench for HDL
 - Can't test all cases
 - Look for corner cases
 - Try to break logic design
- ☐ Ex: 32-bit adder
 - Test all combinations of corner cases as inputs:
 - 0, 1, 2, 2³¹-1, -1, -2³¹, a few random numbers
- ☐ Good tests require ingenuity

Silicon Debug

- ☐ Test the first chips back from fabrication
 - If you are lucky, they work the first time
 - If not...
- ☐ Logic bugs vs. electrical failures
 - Most chip failures are logic bugs from inadequate simulation
 - Some are electrical failures
 - Crosstalk
 - Dynamic nodes: leakage, charge sharing
 - Ratio failures
 - A few are tool or methodology failures (e.g. DRC)
- ☐ Fix the bugs and fabricate a corrected chip

Shmoo Plots

- ☐ How to diagnose failures?
 - Hard to access chips
 - Picoprobes
 - Electron beam
 - Laser voltage probing
 - Built-in self-test
- ☐ Shmoo plots
 - Vary voltage, frequency
 - Look for cause of electrical failures

Clock period in ns on the left, frequency increases going up Voltage on the bottom, increase left to right

* indicates a failure

Works at high but not low frequency

Fails at a specific point in the shmoo

Shmoo Plots

- ☐ How to diagnose failures?
 - Hard to access chips
 - Picoprobes
 - Electron beam
 - Laser voltage probing
 - Built-in self-test
- ☐ Shmoo plots
 - Vary voltage, frequency
 - Look for cause of electrical failures

Clock period in ns on the left, frequency increases going up Voltage on the bottom, increase left to right

* indicates a failure

Works at high but not low frequency

Leakage

Fails at a specific point in the shmoo

Coupling

Manufacturing Test

- ☐ A speck of dust on a wafer is sufficient to kill chip
- ☐ *Yield* of any chip is < 100%
 - Must test chips after manufacturing before delivery to customers to only ship good parts
- Manufacturing testers are very expensive
 - Minimize time on tester
 - Careful selection of test vectors

Testing Your Chips

- ☐ If you don't have a multimillion dollar tester:
 - Build a breadboard with LED's and switches
 - Hook up a logic analyzer and pattern generator
 - Or use a low-cost functional chip tester

TestosterICs

- ☐ Ex: TestosterICs functional chip tester
 - Designed by clinic teams and David Diaz at HMC
 - Reads your IRSIM test vectors, applies them to your chip, and reports assertion failures

Stuck-At Faults

- ☐ How does a chip fail?
 - Usually failures are shorts between two conductors or opens in a conductor
 - This can cause very complicated behavior
- ☐ A simpler model: *Stuck-At*
 - Assume all failures cause nodes to be "stuck-at"
 0 or 1, i.e. shorted to GND or V_{DD}
 - Not quite true, but works well in practice

Examples

17: Design for Testability

CMOS VLSI Design

Slide 12

Observability & Controllability

- Observability: ease of observing a node by watching external output pins of the chip
- □ Controllability: ease of forcing a node to 0 or 1 by driving input pins of the chip
- □ Combinational logic is usually easy to observe and control
- ☐ Finite state machines can be very difficult, requiring many cycles to enter desired state
 - Especially if state transition diagram is not known to the test engineer

Test Pattern Generation

- Manufacturing test ideally would check every node in the circuit to prove it is not stuck.
- □ Apply the smallest sequence of test vectors necessary to prove each node is not stuck.
- □ Good observability and controllability reduces number of test vectors required for manufacturing test.
 - Reduces the cost of testing
 - Motivates design-for-test

SA1

SA0

Π Δ.

 \Box A_1

 \Box A_0

□ n1

□ n2

□ n3

■ Minimum set:

 \Box A_3

SA1 {0110} SA0 {1110}

 \Box A_1

 \Box A_0

□ n1

□ n2

□ n3

■ Minimum set:

 \Box A_3

 $A_3 = \{0110\}$ $A_2 = \{1010\}$

SA1

SA0 {1110}

{1110}

 \Box A_0

□ n1

□ n2

□ n3

■ Minimum set:

 \Box A_3

SA1 {0110} {1010}

{0100}

SA0 {1110} {1110}

{0110}

 A_3 A_2 n1 n3 n3

 \Box A_1

 \Box A_0

□ n1

□ n2

□ n3

☐ Minimum set:

{0110} {1010} {0100} {0110}

SA1

SA0 {1110} {1110}

> {0110} {0111}

n2

n1

n3

Minimum set:

SA1 SA0 n1 {0110} {1110} {1010} {1110} n3 {0110} {0100} {0110} {0111} {0110} {1110} n1 n2

☐ Minimum set:

n3

☐ Minimum set:

17: Design for Testability

CMOS VLSI Design

☐ Minimum set:

17: Design for Testability

CMOS VLSI Design

☐ Minimum set: {0100, 0101, 0110, 0111, 1010, 1110}

17: Design for Testability

CMOS VLSI Design

Design for Test

- Design the chip to increase observability and controllability
- ☐ If each register could be observed and controlled, test problem reduces to testing combinational logic between registers.
- □ Better yet, logic blocks could enter test mode where they generate test patterns and report the results automatically.

Scan

- ☐ Convert each flip-flop to a scan register
 - Only costs one extra multiplexer
- Normal mode: flip-flops behave as usual
- ☐ Scan mode: flip-flops behave as shift register
- ☐ Contents of flops
 can be scanned
 out and new
 values scanned
 in

CLK

SCAN

SI ·

Scannable Flip-flops

17: Design for Testability

CMOS VLSI Design

Slide 26

Built-in Self-test

- Built-in self-test lets blocks test themselves
 - Generate pseudo-random inputs to comb. logic
 - Combine outputs into a syndrome
 - With high probability, block is fault-free if it produces the expected syndrome

- ☐ Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

Step	Q
0	111
1	
2	
3	
4	
5	
6	
7	

- ☐ Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

Step	Q
0	111
1	110
2	
3	
4	
5	
6	
7	

- ☐ Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

Step	Q
0	111
1	110
2	101
3	
4	
5	
6	
7	

- ☐ Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

Step	Q
0	111
1	110
2	101
3	010
4	
5	
6	
7	

- ☐ Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

Step	Q
0	111
1	110
2	101
3	010
4	100
5	
6	
7	

- ☐ Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

Step	Q
0	111
1	110
2	101
3	010
4	100
5	001
6	
7	

- ☐ Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

Step	Q
0	111
1	110
2	101
3	010
4	100
5	001
6	011
7	

- ☐ Linear Feedback Shift Register
 - Shift register with input taken from XOR of state
 - Pseudo-Random Sequence Generator

Step	Q
0	111
1	110
2	101
3	010
4	100
5	001
6	011
7	111 (repeats)

BILBO

- □ Built-in Logic Block Observer
 - Combine scan with PRSG & signature analysis

Boundary Scan

- ☐ Testing boards is also difficult
 - Need to verify solder joints are good
 - Drive a pin to 0, then to 1
 - Check that all connected pins get the values
- ☐ Through-hold boards used "bed of nails"
- ☐ SMT and BGA boards cannot easily contact pins
- Build capability of observing and controlling pins into each chip to make board test easier

Boundary Scan Example

17: Design for Testability

CMOS VLSI Design

Slide 38

Boundary Scan Interface

□ Boundary scan is accessed through five pins

– TCK: test clock

– TMS: test mode select

– TDI: test data in

– TDO: test data out

– TRST*: test reset (optional)

☐ Chips with internal scan chains can access the chains through boundary scan for unified test strategy.

Summary

- Think about testing from the beginning
 - Simulate as you go
 - Plan for test after fabrication
- "If you don't test it, it won't work! (Guaranteed)"